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A rather old question

Source of pictures: Wikipedia (left) & AbeBook (right)
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Current practice: Randomized Controlled Trials (RCTs for short)

A longstanding presence of RCTs . . . now being the gold-standard

For e.g. in the 16th century a cross-over trial has
been documented about rhubarb’s effect. Source:
The Conversation - Wellcome Collection, CC BY Recently approved drugs by the Food and Drug Administration (FDA), all with their corresponding

RCT snapshot and information. Source: www.fda.gov
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James Lind’s experiment formalization: Who?

From left to right: Ronald Fisher, Jerzy Neyman, and Egon Pearson

Source: towardsdatascience website - What can an Octopus tell us?
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James Lind’s experiment formalization: What?

This slide is an introduction to the Potential Outcome framework.

Assume your goal is to measure the effect of a drug on an outcome.

Using the potential outcome framework (Ney-
man, 1923), we denote

• A the treatment,

• X the covariates,

• Y the observed outcome.

For each individual i, consider each of the
possible outcomes, as if we consider coun-
terfactual worlds, Y(1)

i (treated), and Y(0)
i (un-

treated).

Y(1)i
?
= Y(0)i
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Data at hand

Individual causal effect of the treatment: ∆i = Y(1)
i − Y(0)

i

Problem: ∆i never observed (only observe one outcome/indiv). Causal inference as a missing value
problem?

Covariates Treatment Outcome(s) Observed outcome
X1 X2 X3 A Y(0) Y(1) Y
1.1 20 F 1 NA T T
-6 45 F 0 F NA F
0 15 M 1 NA F F

. . . . . . . . . . . . . . .

-2 52 M 0 T NA T

Two sources of randomness in this data set:

• Treatment assignment allocation,

• Sampling individuals in a wider population.
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Randomized Controlled Trial: an empirical trick to measure the causal effect

Statistical trick: Inference on potential outcomes’ distributions.

E
[
Y(1)

]
?
= E

[
Y(0)

]
.

More precisely people often target the so-called Average Treatment Effect (ATE),

τ = E
[
Y(1) − Y(0)

]
.

Running a randomized controlled trial is a way to ensure,

Assumption - Treatment assignment exchangeability

∀i, Y(1)
i , Y(0)

i ⊥⊥ Ai,

Treated and control groups differ only with respect to treatment allocation.

Another assumption we will assume today is the SUTVA assumption: no interference and
consistency Yi(A1, A2, . . . , An) = Yi(Ai).
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Statistical properties of the difference-in-means

Suppose we have access to n independent and identically distributed examples labeled i = 1, . . . ,n,
a response Yi ∈ Y , and a binary treatment indicator Ai ∈ {0, 1} assigned randomly.

Definition - Horvitz-Thomson

τ̂H T =
1
n1

∑
Ai=1

Yi −
1
n0

∑
Ai=0

Yi ,where na = |{i : Ai = a}| ,

Proposition - Asymptotically normal estimator
The difference-in-means estimator is asymptotically normal,

√
n (τ̂HT − τ)

d→ N
(
0, σ2HT

)
,

where

σ2HT =

E
[(
Y(1)

)2]
π

+

E
[(
Y(0)

)2]
1− π

− τ 2.

Bonus: τ̂HT is an unbiased estimator.
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But, the limited scope of RCTs is increasingly under scrutiny

• Short timeframe,
• unrealistic real-world compliance,

• limited sample size,
• unrepresentative sample.

Can the result of a large international trial – assessing the efficacy of Tranexamic Acid (TXA) on brain-injured
death (TBI) – be generalized to the French population?

Source: CRASH3 data trial and Traumabase cohort data comparing patients suffering from Traumatic Brain Injuries, and in particular their Glasgow
score (severity of the trauma).
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Motivation

Question from cliniciansa

awww.traumabase.eu

Can we estimate the average effect of Tranexamic Acid (TXA) on brain-injured death (TBI) on the
French population in trauma centers?

Data sources and evidence at hand:

CRASH3

• Multi-centric RCT over 29 counties,

• ∼ 9 000 individuals,

• High internal validity

• Measured a positive effect of TXA on moderate
injured patients

Traumabase

• Observational sample,

• ∼ 30 000 individuals,

• High external validity

• Observational analysis can not reject the null
hypothesis of no effect (and pushing toward
negative effect).

Is there a paradox?
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CRASH-3: Main results

11

Source: www.thelancet.com Vol 394, 2019



Observational data

Non-experimental studies – called Observational data – are often confounded, meaning that
treated patients are not exactly like untreated ones.

0.000

0.005

0.010

0.015

50 100 150 200 250
Systolic blood pressure

TXA

control

treated

In other words, the conditional independence does no longer hold, E [Y | A = a] 6= E[Y(a)].
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Source: Traumabase data, own plot.



Combining data for generalizability or
transportability



Introduction to the notations

Using the potential outcome framework1 , we denote

• A the treatment,

• X the covariates,

• Y the observed outcome.

Two data sources:
• A trial of size n with pR (x) the probability of
observing individual with X = x,

• A sample of the target population of interest –
for e.g. a national cohort
(resp. m and pT (x)).

1Y(a)i is the potential outcome, would the individual i have received treatment a. (Neyman, 1923)
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What if we only use the trial to estimate the Average Treatment Effect (ATE)?

Compute ATE averaging over the trial sample:

τ̂HT,n =
1
n
∑
i∈R

(
YiAi
π

−
Yi(1− Ai)
1− π

)
,

• where π is the probability to receive treatment in the trial (usually 0.5),
• Unbiased and consistent estimator of the average effect of treatment on population PR .

But, because distributions are different between the trial and the target population,
pR(x) 6= pT(x) ⇒ τR := ER[Y(1) − Y(0)]︸ ︷︷ ︸

ATE in the RCT

6= ET[Y(1) − Y(0)] := τ︸ ︷︷ ︸
Target ATE

Re-weighting the trial’s data?

τ̂IPSW :=
1
n
∑
i∈R

w(Xi)
(
YiAi
π

−
Yi(1− Ai)
1− π

)
︸ ︷︷ ︸

Horvitz-Thomson.

=⇒ Inverse Propensity Sampling Weighting (IPSW) - Stuart et al. 2010.
Other methods exist.
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Intuitions for the methods
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Generalization’s causal assumptions.

Re-weight, so that the trial follows the target sample’s distribution,

w(X) :=
pT(X)
pR(X)

.

Which assumptions?

Transportability

∀x ∈ X, PR(Y(1) − Y(0) | X = x) = PT(Y(1) − Y(0) | X = x).

i.e. Needed covariates to re-weight correspond to shifted treatment effect modifier covariates (along the absolute scale).

Support inclusion

supp(PT(X)) ⊂ supp(PR(X))

i.e. Each individuals in the target population has to be represented in the trial.
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State-of-the-art and open practical questions

State-of-the-art
• Re-weighting can be found back in the early 2000’s;

=⇒ see books in epidemiology, under the name standardization

• But the idea of relying on an external representative sample is recent;
=⇒ in particular seminal articles can be found in the early 2010’s2 and is getting more and more popular3

• Since, other approaches than IPSW have been proposed
=⇒ outcome-modeling (G-formula), balancing, doubly-robust approaches, . . .

In practice, open questions remain
• What is the impact of the two data sources’ sizes n and m?
• Which covariates should we use?

For the rest of the work, we assume X is composed of categorical covariates
=⇒ for e.g. gender, smoking status, Glasgow score, insurance status, . . .

2Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target Populations: The ACTG 320 Trial,
American Journal of Epidemiology
3Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.

17



State-of-the-art and open practical questions

State-of-the-art
• Re-weighting can be found back in the early 2000’s;

=⇒ see books in epidemiology, under the name standardization

• But the idea of relying on an external representative sample is recent;
=⇒ in particular seminal articles can be found in the early 2010’s2 and is getting more and more popular3

• Since, other approaches than IPSW have been proposed
=⇒ outcome-modeling (G-formula), balancing, doubly-robust approaches, . . .

In practice, open questions remain
• What is the impact of the two data sources’ sizes n and m?
• Which covariates should we use?

For the rest of the work, we assume X is composed of categorical covariates
=⇒ for e.g. gender, smoking status, Glasgow score, insurance status, . . .

2Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target Populations: The ACTG 320 Trial,
American Journal of Epidemiology
3Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.

17



State-of-the-art and open practical questions

State-of-the-art
• Re-weighting can be found back in the early 2000’s;

=⇒ see books in epidemiology, under the name standardization

• But the idea of relying on an external representative sample is recent;
=⇒ in particular seminal articles can be found in the early 2010’s2 and is getting more and more popular3

• Since, other approaches than IPSW have been proposed
=⇒ outcome-modeling (G-formula), balancing, doubly-robust approaches, . . .

In practice, open questions remain
• What is the impact of the two data sources’ sizes n and m?
• Which covariates should we use?

For the rest of the work, we assume X is composed of categorical covariates
=⇒ for e.g. gender, smoking status, Glasgow score, insurance status, . . .

2Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target Populations: The ACTG 320 Trial,
American Journal of Epidemiology
3Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.

17



Theoretical study of IPSW



Theoretical guarantees of IPSW with oracle weights

τ̂∗
π,T, R,n =

1
n
∑
i∈R

pT(Xi)
pR(Xi)

True (or oracle) probabilities

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Properties

E
[
τ̂∗π,T,R,n

]
= τ, and Var

[
τ̂∗π,T,R,n

]
=
Voracle
n

,

where

Voracle := VarR

[
pT(X)
pR(X)

τ(X)
]
+ ER

[(
pT(X)
pR(X)

)2
VHT(X)

]
.

τ(x) being the effect of treatment on strata X = x.
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How do we estimate weights in practice?

τ̂∗
π,T,n =

1
n
∑
i∈R

pT(Xi)
p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Estimation is intuitive, and corresponds to how many times the specific combinaison of category x appears in
the trial, that is

p̂R,n(x) :=
1
n
∑
i∈R

1Xi=x

19



How do we estimate weights in practice?

τ̂∗
π,T,n =

1
n
∑
i∈R

pT(Xi)
p̂R,n(Xi)

Yi
(
Ai
π

− 1− Ai
1− π

)
, with p̂R,n(x) :=

1
n
∑
i∈R

1Xi=x.

Finite-sample properties - semi oracle estimate

E
[
τ̂∗
π,T,n

]
− τ = −

∑
x∈X

pT(x) (1− pR(x))n τ(x)

and Var
[
τ̂∗
π,T,n

]
≤ 2Vso
n+ 1 +

(
1−min

x∈X
pR(x)

)n

ET

[
τ(X)2

]
,

where

Vso := ER

[(
pT(X)
pR(X)

)2

VHT(X)
]
= Vo − VarR

[
pT(X)
pR(X)

τ(X)
]
.

• Positive but exponentially small
bias compared to the oracle
estimate
→ undercoverage of some
categories in the trial

• Smaller variance than the oracle
estimate
→ Estimating a denominator can
be more efficient than using the
oracle.
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Theoretical guarantees of IPSW with completely estimated weights

τ̂π,n,m =
1
n
∑
i∈R

p̂T,m(Xi)

Estimated with T

p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Asymptotic properties

Letting lim
n,m→∞

m/n = λ ∈ [0,∞],

lim
n,m→∞

min(n,m) Var [τ̂π,n,m] = min(1, λ)
(
Var [τ(X)]

λ
+ Vso

)
.

Variance depends on the size of the two data sets, n and m
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What if also estimating π?

τ̂∗
n,m =

1
n
∑
i∈R

p̂T,m(Xi)
p̂R,n(Xi)

Yi
(
YiAi
π̂n(x)

− Yi(1− Ai)
1− π̂n(x)

)
,

Asymptotic properties

Letting lim
n,m→∞

m/n = λ ∈ [0,∞],

lim
n,m→∞

min(n,m) Var [τ̂n,m] = min(1, λ)
(
Var [τ(X)]

λ
+ Ṽso

)
,

where
Ṽso ≤ Vso.

Variance is smaller if also estimating π with the data

This phenomenon is the same as the Difference-in-Means having better precision than the Horvitz-Thomson on a trial.
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Impact of additional covariates



Impact of additional covariates: for the worse

Covariates needed to generalize are,
• Treatment effect modifier
a covariate along which the treatment effect is modulated;

• Shifted
not the same proportion in each population.

But in practice,
one may be tempted to add as many covariates as possible:

• It does prevent to miss important ones;

• But what happen if gender is added, but is only shifted?

d
Plot showing the impact of adding a non-necessary covariates V when
generalizing. Plain lines are the theory, and dots the simulations

(i) Including non-necessary covariates can seriously damage precision!
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Impact of additional covariates: for the worse, and the better

What happen if a non-shifted covariate, known to be treatment effect modifier, is added?

(ii) Adding a non-shifted, but treatment effect modifiers covariate, in the adjustment set improves precision.
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N.B.: To find X really is a tricky task!

25
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Semi-synthetic simulation

• All the results are illustrated on semi-synthetic simulations;
• Build from two large clinical data bases, reflecting a real-world situation

• CRASH3 ∼ 9 000 individuals.
• Traumabase ∼ 30 000 individuals.

• The outcome is the only synthetic part,

Y := f (GCS,Gender) + A τ(TTT,Blood Pressure) + εTTT,

More in the main paper,
• Different asymptotic
regimes,

• The re-weighted trial has
not necessarily larger
variance,

• Effect of adding
non-necessary covariates.
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Conclusion

Main idea:

• RCTs are, and will remain, cornerstones of modern-based medicine,

• But they have limits, such as a lack of representativeness,

• So-called real-world data can help strengthen clinical evidence.

For this to happen:

• We need to build new methods . . .

• . . . along with a clear understanding of the assumptions and their statistical properties.

In this talk:

• New theoretical properties for an intuitive method i.e. trial re-weighting

• Alongside with clear and important guidelines for users about covariate selection.
=⇒ Physicians and epidemiologists have an important role to play in selecting a limited number of covariates when generalizing trial’s

findings!
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Thank you very much for your attention!!
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Appendix



Theoretical guarantees of IPSW with semi-oracle (= so) weights

τ̂∗
π,T,n =

1
n
∑
i∈R

pT(Xi)
p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Asymptotic properties

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ, and lim

n→∞
nVar

[
τ̂∗π,T,n

]
= Vso ≤ Voracle

Estimating pR(x) is more efficient than taking the oracle probability (counter-intuitive!)

28



Semi synthetic simulation

Using the data from the Tennessee Student/Teacher Achievement Ratio (STAR) study (?).

We generate a biased RCT sample based on covariate g1surban and a representative sample.

STAR Trial ~ Ground truth

ATE ~ 12.8

Almost 5000 children randomized

Fair sampling
m = 500

Biased sampling
n = 563 and ATE1 ~ 0

g1surban
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Semi synthetic simulation - Generalization with missing covariate

Bias induced is around 7 points when omitting g1surban.

Can the sensitivity analysis estimates the bias when g1surban is missing in the observational data
but not the RCT?
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Context

Consider that a policy maker has at hand:

• an already conducted trial about a treatment or policy (→ τ̂1),
• and a sample of the target population of interest (τ̂?).
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