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Potential outcome theory and
Rubin Causal model



Rubin Causal Model with mutli-treatments

• i = 1, ... , n: an individual subject to a treatment.

• T : the treatment assignment variable.

• T = {t0, t1, ... , tK }: the set of possible treatments.
Historically, T is binary and T = {0, 1}.

• X ∈ Rd : vector of d covariates (confounders).

• Yobs = Y (T ): the observed outcome corresponding
to the treatment T .

• Y (t): the counter-factual outcome that would have
been observed under treatment level t ∈ T .

Rubin Causal Model [Rubin, 1974]

Goal: Estimate the Causal Effect of the treatment T on the outcome Y .
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Assumptions of RCM

Consistency: For an individual i , we observe the potential outcome associated to assigned
treatment Ti

Yobs,i = Yi(Ti)

Unconfoundedness: Given the covariates X , the treatment mechanism is unconfounded for all
treatment levels

∀t ∈ T , 1{T = t} |= Y (t) | X

Positivity: Each individual has a positive probability of receiving any dose of treatment t when
given the observed covariates

∀t ∈ T , ∀x ∈ Rd 0 < P(T = t|X = x) < 1.
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Why Heterogeneous Treatment Effects?

Challenge 1: A treatment may affect individuals differently. We need to conduct group-level comparisons.

The treatment effect within a sub-group with covariates x is modelled by the Conditional Average
Treatment Effect (CATE)

τt(x) = E[Y (t) − Y (t0)|X = x].
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Estimation of CATEs using Machine Learning

Challenge 2: This is not a standard ML supervised learning problem

Machine Learning - Mitchell [1997]
A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E

Experience E = Supervised Learning i.e. Regression of Y (t) − Y (t0) on the covariates X .
Yi(t) − Yi(t0) is not observed for each unit i . This is the fundamental problem of causal
inference [Holland, 1986].

Task T = Prediction of the CATE τt for a given sub-group with covariates x.

Performance Measure P = Accuracy, Precision, RMSE etc. The counterfactual prediction is
counterfactual by definition, it cannot be measured without knowing the ground truth model.
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Meta-Learners for estimating the CATE

What is a meta-learner?

A Meta-learner [Künzel et al., 2019] is a statistical framework that models and
estimate the CATE

τt(x) = E[Y (t) − Y (t0)|X = x]

No model restrictions: any supervised ML method can be used.
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Direct plug-in meta-learners

Definition: Naive estimators that estimate the CATE directly by a plug-in difference.

The T-learner (T stands for two):

• Consider two models models µt and µt0 , where µw (x) = E(Y (w)|X = x) for w ∈ {t, t0}
• Estimate µ̂t by regressing Y (t) on X using St = {i , Ti = t}. Do the same for µ̂t0 .
• Compute the CATE as plug-in difference τ̂T (x) = µ̂t(x) − µ̂t0(x)

The S-learner (S stands for single):

• Consider a single model µ such that µ(w , x) = E(Yobs | T = w , X = x).
• Estimate µ̂ by regressing Yobs on both X and T using all observed data.
• Compute the CATE as plug-in difference τ̂S(x) = µ̂(t, x) − µ̂(t0, x).
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Pseudo-outcome meta-learners

Definition: Learners that target the CATE directly by regressing a pseudo-outcome Zt on X .
Here r(t, X) = P(T = t | X) is the GPS and µt = E(Y (t) | X).

M-learner: (M stands for modified)

ZM
t = 1{T = t}

r(t, X) Yobs − 1{T = t0}
r(T = t0, X)Yobs.

DR-learner: (DR stands for Doubly-Robust)

ZDR
t = Yobs − µT (X)

r(T = t, X) 1{T = t} − Yobs − µT (X)
r(t0, X) 1{T = t0} + µt(X) − µt0(X).

X-learner: (X stands for Cross estimation procedure)

ZX
t = 1{T = t}(Yobs − µt0(X)) +

∑
t′ ̸=t

1{T = t ′}(µt(X) − Yobs)

+
∑
t′ ̸=t

1{T = t ′}(µt′(X) − µt0(X)).
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Neyman orthogonality based learners: R-learner

Definition: Learners that use the Neyman-Orthogonality and the Robinson [1988] decomposition
to address a minimization problem with respect to a causal component.

R-Learner: Estimate all K − 1 CATE models {τt}t ̸=0 by addressing:

{τ̂ (R)
t }t ̸=t0∈T = arg min

{τt }t ̸=t0 ∈F

1
n

n∑
i=1

[
(Yobs,i − m(X i)) −

∑
t ̸=t1∈T

(
1{Ti = t} − r(t, X i)

)
τt(X i)

]2

where r(t, x) = P(T = t | X = x), m(x) = E(Yobs | X = x) and F is the space of candidate

models (e.g. linear models).
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Comparison of meta-learners

Meta-learner Advantages Disadvantages

T-learner ✓ Simple approach Selection bias
Low sample regime

S-learner ✓ Simple approach Confounding effects
Regularization bias

M-learner ✓ Consistency* High variance
DR-learner ✓ Consistency* High variance

✓ Doubly Robust
X-learner ✓ Consistency* Too complex

✓ Low variance

R-learner ✓ Flexible representation Heavy problem
Consistency?
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The consistency of pseudo-outcome meta-learners

A pseudo-outcome meta-learner is said to be consistent if E(Zt | X = x) gives an unbiased
estimation of the CATE τt(x).

The pseudo-outcome random Zt incorporate the GPS r and the outcome model µ·. they are
called nuisance parameters.

In reality, you need to first the nuisance parameters (now r̂ and µ̂·) to have the pseudo-outcome
vector zt = (Zt,i)n

i=1 and regress it on X .

The consistency of these meta-learners is achieved if the nuisance parameters are well-specified.
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The consistency of pseudo-outcome meta-learners

One key element to prove the consistency of pseudo-outcome meta-learners is the assumption of
Unconfoundedness.

Indeed,

E(1{T = t}Yobs | X = x) = E(1{T = t}Y (t) | X = x)
= E(1{T = t} | X = x)E(1{T = t} | X = x)
= r(t, x)µt(x)

and so on..

All you need to have is r̂ = r and/or µ̂t = µt to obtain E(Zt | X = x).
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The bias-variance analysis of pseudo-outcome meta-learner

Assumption A1. We assume that the outcomes Y (t) are generated from a function f such that

Y (t) = f (t, X) + ϵ with ϵ ∼ N (0,σ2)

Assumption A2. We assume the existence of β∗
t ∈ Rp such that f (t, x) =

∑p−1
j=0 β

∗
t,j fj(x).

Assumption A3. We assume the positivity of the GPS 0 < rmin ≤ r(t, X), and we assume that f
and µt are bounded i.e. there exists C > 0 such that |µt(x)|, |f (t, x)| ≤ C for all t ∈ T and
x ∈ Rd .
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The bias-variance analysis of pseudo-outcome meta-learner

Consider the pseudo-outcome random Variable Zt such that

Zt = At(T , X)Yobs + Bt(T , X)

where At(T , X) and Bt(T , X) are given for each pseudo-outcome meta-learner.

The regression coefficient β̂t are given by the Ordinary Least Squares (OLS) method

β̂t =
(
H⊤H

)−1H⊤zt ,

where zt = (Zt,i)1≤i≤n and H = (Hij) ∈ Rn×p is the regression matrix.
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The bias-variance analysis of pseudo-outcome meta-learner

Theorem

Under Assumptions (A1-A3), the OLS estimator β̂t has bias B
(
β̂t

)
= E(β̂t − β∗

t ) = 0 if the
nuisance parameters are well-specified, and a covariance matrix V

(
β̂t

)
= 1/n C, whose terms

Cij are bounded by:

|Cij | ≤


EM = O

(
1

r1+ϵ
min

)
for the M-learner

EDR = O
(

err(µ̂t )+err(µ̂t0 )
r1+ϵ
min

)
for the DR-learner

EX = O
(

K 2 ∑
t′ ̸=t err(µ̂t′)

)
for the X-learner

Where err(µ̂t) = E [f (t, X) − µ̂t(X)]2 is the estimation error of µ̂t .
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Sketches of the proof: the general case

Step 1: We write β̂t as function of β∗
t .

β̂t =
(
H⊤H

)−1H⊤zt

=
(
H⊤H

)−1H⊤(
At(Ti , X i)Yobs,i + Bt(Ti , X i)

)n
i=1

= ... replace Yobs by f (T , X ) + ϵ ...
= ... Add and subtract τt(X) ...
= ... Replace τt(X) by Hβ∗

t i.e. assumption made on τt ...
= ... Gather terms of β∗

t and residuals ...

= β∗
t +

(
H⊤H

)−1H⊤ϵ̃t

where ϵ̃i = ψt(Ti , X i) + At(Ti , X i)ϵi and ψt(Ti , X i) = At(Ti , X i)f (Ti , X i) − τt(Xi ) + Bt(Ti , X i)

Here, E(ϵ̃) = E(ψt(T , X)) = 0 if the nuisance parameters in At and Bt are well-specified.
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The bias-variance analysis of pseudo-outcome meta-learner

Step 2: We consider the random variables Z (n)
t of mean m and covariance Cz such that

Z (n)
t =

(1
n (H⊤ϵ̃)1, ... , 1

n (H⊤ϵ̃)p, 1
n (H⊤H)11, ... , 1

n (H⊤H)pp
)⊤ ∈ Rp+p2

We write the residual term as function of β∗
t and Z (n)

t :

β̂t = β∗
t +

(
H⊤H

)−1H⊤ϵ̃t = β∗
t +

(1
nH⊤H

)−1(1
nH⊤ϵ̃t

)
= β∗

t + ϕ(Z (n)
t ) = β∗

t + Φ(S(n), m)

where Φ : Rp+p2 × Rp+p2 → Rp and ϕ : Rp+p2 → Rp are C1-functions and
S(n) =

√
n
(
Z (n)

t − m
)
.
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The bias-variance analysis of pseudo-outcome meta-learner

Step 3: We apply on S(n) the multivariate Central Limit Theorem (CLT):

√
n
(
S(n) − 0

) L−→ N (0, Cz)

and the Delta method
√

n
[
Φ(S(n), m) − Φ(0, m)

]
L−→ N

(
0, J (1)

Φ (0, m)⊤CzJ (1)
Φ (0, m)

)
,

and we get
β̂t = β∗

t + Φ(Sn, m) ≈ β∗
t + Φ(0, m) + gn/

√
n.

where gn, a Gaussian noise with covariance matrix of J (1)
Φ (0, m)⊤CJ (1)

Φ (0, m).
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The bias-variance analysis of pseudo-outcome meta-learner

Step 4: We get the expression of the bias and variance of β̂t

For n big enough :
E(β̂t) = β∗

t + Φ(0, m).

and,
V(β̂t) ≈ 1

n J (1)
Φ (0, m)⊤CJ (1)

Φ (0, m).

Here, B(β̂t) = E(β̂t) − β∗
t ) = Φ(0, m) in the general case, and B(β̂t) = 0 in the specific case

of well-specified nuisance parameters.
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The bias-variance analysis of pseudo-outcome meta-learner

The specific case: Assume that nuisance parameters in At and Bt are well-specified.

By Slutsky’s theorem: √
n
(
β̂t − β∗

t
)

= n
(
H⊤H

)−1 · 1/
√

n H⊤ϵ̃

L−→ N (0, F−1ΣF−1)

where F = limn→+∞ 1/n
(
H⊤H

)
and Σ is a covariance matrix with entries

Σij = E
[
fi(X)fj(X)ψ2

t (T , X)
)

+ σ2E
(
fj(X)fj′(X)A2

t (T , X)
]
.

N, Acharki 19/38



The bias-variance analysis of pseudo-outcome meta-learner

The specific case: Assume that nuisance parameters in At and Bt are well-specified.

By Slutsky’s theorem: √
n
(
β̂t − β∗

t
)

= n
(
H⊤H

)−1 · 1/
√

n H⊤ϵ̃

L−→ N (0, F−1ΣF−1)

where F = limn→+∞ 1/n
(
H⊤H

)
and Σ is a covariance matrix with entries

Σij = E
[
fi(X)fj(X)ψ2

t (T , X)
)

+ σ2E
(
fj(X)fj′(X)A2

t (T , X)
]
.

N, Acharki 19/38



The bias-variance analysis of pseudo-outcome meta-learner

Thus
B(β̂t) = E(β̂t − β∗

t ) = 0,

V(β̂t) ≈ 1
n F−1ΣF−1.

Comparing the errors bounds of each meta-learner is equivalent to compare the terms |Σij |

Here, after some long calculations + Minkowski + Holder (see Appendix B in the paper).

|Σij | ≤


EM = O

(
1

r1+ϵ
min

)
for the M-learner

EDR = O
(

err(µ̂t )+err(µ̂t0 )
r1+ϵ
min

)
for the DR-learner

EX = O
(

K 2 ∑
t′ ̸=t err(µ̂t′)

)
for the X-learner
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Description of the semi-synthetic dataset

A semi-synthetic dataset simulating the heat extraction performance Qwell delivered by a
multistage Enhanced Geothermal System (EGS) following the physical model:

Qwell = Qfracture × ℓL/d × ηd .

where

• Qfracture is the unknown heat extraction performance from a single fracture.
• ℓL ∈ [2000, 14000] is the lateral length of the well.
• d ∈ [100, 500] is the average spacing between two fractures.
• ηd , known function of d , is the stage efficiency penalizing the individual contribution when

fractures are close to each other.
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Description of the semi-synthetic dataset ii

Qfracture is simulated (with a numerical emulator) using fracture’s length, height, width and
permeability (fracture design), reservoir’s porosity, permeability and pore pressure (reservoirs
characteristics).

A full factorial DoE dataset of n = 10 × 10 × 2 × 3︸ ︷︷ ︸
design

× 3 × 3 × 3︸ ︷︷ ︸
reservoir

= 16200 observations covering

all possible scenarios of a fracture in a reservoir is created.

The final dataset containing Qwell is obtained after defining your own well characteristics (lateral
lengths ℓL and fracture spacing d).
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Creation of biased dataset

Purpose: Emulate observational data found in real-world situations.

How: - Preferential selection strategy - selecting preferentially only observations with certain
characteristics

Example: Geothermal wells with larger lateral lengths are likely to have more fractures
(expensive wells are located in better geological areas).

Consequence: Low (under-estimated) heat performance for small wells and high
(over-estimated) heat performance for large wells.
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Example of preferential selection

Consider three-level treatments T ∈ {0, 1, 2} (e.g. lateral length) and discrete covariate X is
uniformly distributed X ∼ U(100, 1000) (e.g. fracture length).

In D0, Ti = 0 and the Xi are i.i.d uniformly distributed over [100, 300] = I0.
In D1, Ti = 1 and the Xi are i.i.d uniformly distributed over (300, 600] = I1.
In D2, Ti = 2 and the Xi are i.i.d uniformly distributed over (600, 1000] = I2.

In D3, the treatment Ti is assigned randomly (RCT setting) to Xi
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Example of preferential selection ii

This is a observational setting where T is confounded X (e.g. the larger X is, the more likely we
have chance to receive the treatment T = 2). The Generalized Propensity Score r satisfies:
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What can we do with this dataset?

You can have more fun by manipulating the dataset.

• Introduce more selection bias in the dataset.
• Remove some observations (causal inference with missing data).
• Remove some covariates (causal inference with unobserved confounders)
• Change the distribution of "controlled" covariates (Lateral length and average spacing)
• ... any other suggestion?

Availability: The semi-synthetic dataset is available at this link.

It will be available soon on my Github (with the code and the biased dataset).
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Application on the estimation of multi-valued CATEs i

We consider the lateral length T = ℓL as treatment, Y = log (Qwell) as outcome and X are the
rest of parameters. We want to estimate CATEs of the lateral length such that

τℓL(x) = E [log (Qwell(ℓL)) − log (Qwell(ℓ0)) | X = x] = log(ℓL) − log(ℓ0)
i.e. the expected improvement of log (Qwell) compared to baseline well of ℓ0.

Observational biased dataset. A sample of n = 10000 units such that Wells with high lateral
length ℓL are likely to have larger fractures ℓF (and therefore better heat Qwell) and vice versa.
Confounder variable: fracture length

Goal. Know which meta-learners perform better to estimate the true CATEs τℓL?
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Application on the estimation of multi-valued CATEs i

Here, the GPS satisfies (proof in the paper for the generalized case with K treatment)

P(Lateral_length = ℓL | X = x) =


14
26 if frac_length ∈ [h(ℓL), h(ℓL) + 1000],
1
26 otherwise.

Consequence: low (under-estimated) heat performance for small wells and high
(over-estimated) heat performance for large wells.
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Application on the estimation of multi-valued CATEs iii
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Answers to some questions about our work i

Q2: Do the « Double Machine Learning » and « Doubly robust learning » approaches fall in the
same classe of Meta-learners?

A: The DR-learner is inspired from « Doubly Robust learning » approach.

1. You estimate the outcome model µt and the propensity score r
2. You build the pseudo-outcome Zt

3. You regress Zt on X to estimate CATEs.

But the « Double Machine Learning » is quite a different approach, but similar somehow to the
R-learner).

1. You assume a structural equation on the outcome Y and T given X and the CATE τ

2. You estimate the structural components of this structural equation
3. You estimate the CATEs τ by minimizing the residuals errors
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Answers to some questions about our work ii

Q3: Random Forest and XGBoost are interpolating models unlike linear models, don’t you think
that maybe the reason why linear model performs better ?

A: Excellent remark ! We have doubt the problem of overfitting, we will try extrapolating models
and investigate their results.

Q4: Is the estimation of CATEs an interpolation or extrapolation problem?

A: For X it is an interpolation problem whereas for T it is extrapolation problem. We can
describe it as interpolation problem with missing data.
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Answers to some questions about our work iii

Q6: Can you comment more about the mPEHE metric?

A: The mPEHE is the mean of PEHE over all treatments. It is an extension of the PEHE [Hill,
2011, Shalit et al., 2017, Curth et al., 2021], which is an equivalent to RMSE in the binary case.

Q7: Don’t you think that the mPEHE metric is the adapted one?

A1: Well spotted, mPEHE is a combinaison of norms ℓ2 and norm ℓ1. It could be more
interesting to take normℓ2 or normℓ1 over all treatments.

A2: The mPEHE treats all treatment equally, one may think of a weighted metric that penalizes
more or less certain treatments.
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Answers to some questions about our work iv

Q9: Did you try to run different simulations with the same selection bias?

A: No, our simulations were run on a fixed seed. We will try to run different simulations and
inspect the results.

Q9 bis: Did you change the sample size n and see what happens ?

A: Yes, we did in Appendix D5. Increasing the sample size n improves the quality of the
meta-learner’s estimation (expect for the M-learner)
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Answers to some questions about our work v

Q10: What about The conditional independence testing?

A: Unfortunately, no use at this stage. Maybe it can be used to regularized meta-learners?

Q12: The Generalized Propensity Score appears less in the paper, why?

A1: The nature of the problem require the estimation of the CATE at specific sub-groups of
units.

A2: Unlike the ATE, conditioning on the covariates X is much stronger than conditioning on the
GPS r .

A3: The GPS is use to regularize the T-learner and to define pseudo-outcome variables that
target the CATE.
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Answers to some questions about our work vi

Q12: At which level you may need the assumption 3.1 of Unconfoundedness?

A: To guaranty the identification of the CATE and the consistency of meta-learners

Q13: Don’t you need the Do-calculus in your work?

A: The graph of the Rubin Causal Model is known, no collider, no mediator, only a confounder
X .

In the context of counterfactual prediction with RCM, intervening on X is equivalent to
conditioning on X .

p(Y (t) | do(X = x)) = p(Y (t) | X = x). (1)
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Answers to some questions about our work vii

Q15: You considered discrete treatment with K = 10, what would be the result if K → +∞?

A1: On-going work.. but some preliminary results indicate that:

• The performances of the R-learner increase.
• The performances of the T-learner decrease.
• The performances of the X- and S-learners are similar
• Maybe the X-learner is equivalent to S-learner for K → +∞.

A2: The generalization to continuous treatment would require kernel methods and the
estimation of conditional distribution (generalized propensity score).
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Answers to some questions about our work viii

Q17: Imagine that we want to be more precise certain treatments and make the errors smaller
than other treatments? What should we do and how?

A1: The X-learner may be a solution. It incorporates information from other treatments to
predict the CATE at specific level. This claim is to be verified numerically. More numerical
experiments are needed.

A2: Maybe we should suggest a weighted metric ?
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Answers to some questions about our work ix

Q18: Do you have any reasons why to select a specific model or approach while estimating
CATEs ?

A1: The notion of meta-learners does not require specific model (i.e. model-free approach). We
had the freedom to use any base-learner for prediction (Neural Network will be also included
later).

A2: One of our perspectives is the further investigation of the so-called "Sample Fitting"
strategies [Okasa, 2022]: Cross-validation, Train-test split etc.

Q20: Does the treatment change the distribution of p(Y (t)) ?

A: We did not consider these issues on our work.
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