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Introduction



Motivation: Interpretable Machine Learning

In engineering and industry:

The prediction task is statistically achieved (high R2, low RMSE ...)

However

There is a discordance between ML predictions and what engineers and specialists expect with
their physical models.
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Motivation: Interpretable Machine Learning

ML Predictions: "I saw similar scratches with the red so it’s the red pen".
Physical models: "The color is blue so it’s the blue pen".
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Machine Learning vs Causal Inference

Machine Learning: We want to predict what usually happens in a given situation.

Causal inference: We want to predict what would happen if we change the system.

• Causal mechanisms are more stable than
correlations.

• Inferring causal effects is crucial for development
of new strategies and decision making.
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Examples of causal inference questions

Medicine: Was it the aspirin that stopped my headache? would I still have had the headache if I
did not taken Aspirin [Dawid, 2000]

Economy: How effective are financial incentives for teachers [Imberman, 2015] ?

Sociology: Did busing programs increase the school achievement of disadvantaged minority
youth [Morgan and Winship, 2014] ?

Politics: Do polls influence the electoral choice and behavior of voters [Arceneaux et al., 2006]?

Advertising/Marketing: What is the impact of promotions on user retention [Du et al., 2019]?

N, Acharki 4/41



Potential outcome theory and
Rubin Causal model



Definition of causal effect

A practical definition of causality - the counterfactual prediction - [Hernán, 2004]: The variable
(treatment) T has an causal effect on the outcome Y if and only if changing T leads to a
change in Y , while keeping everything else constant.

Keeping everything else constant: Strong requirement. All confounders need to be known or
observed.
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Rubin Causal Model with mutli-treatments

• i = 1, ... , n : an individual subject to a treatment.

• T : the treatment assignment variable.

• T = {t0, t1, ... , tK } : the set of possible treatments.

• X ∈ Rd : vector of d covariates (confounders).

• Yobs = Y (T ) : the observed outcome corresponding
to the treatment T .

• Y (t) : the counter-factual outcome that would have
been observed under treatment level t ∈ T .

Rubin Causal Model [Rubin, 1974]

Goal: Estimate the Causal Effect of the treatment T on the outcome Y .
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Intuition behind RCM

Reminder: If two random variables X and Y are correlated, then either X causes Y , or Y
causes X , or some other variable Z causes both X and Y .

The RCM is useful in local analysis when inferring the “effects of causes”, not for identifying the
“causes of effects” (i.e. causal discovery).
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Intuition behind RCM: Example

You run a regression in two settings:

Mortality = −10.44 Walking + 8.583

Mortality = −2.401 Walking +6.228 Age+7.989.

On the left: the number of steps is associated with lower mortality => Relevant as association.

On the right: The effect of walking is lower than what you expect. => Age Causes Mortality
more than Walking .
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Assumptions of RCM

Consistency: For an individual i , we observe the potential outcome associated to assigned
treatment Ti

Yobs,i = Yi(Ti)

Unconfoundedness: Given the covariates X , the treatment mechanism is unconfounded for all
treatment levels. That is,

∀t ∈ T , 1{T = t} |= Y (t) | X

Positivity: Each individual has a positive probability of receiving any dose of treatment t when
given the observed covariates. That is,

∀t ∈ T , ∀x ∈ Rd 0 < P(T = t|X = x) < 1.
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Estimating Causal Effects

Ingredients: The causal assumptions of consistency, unconfoundedness and positivity.

Result: The counterfactual response is the conditional expectation given T and X .

E[Y (t) | X = x] = E[Yobs | T = t, X = x]

Proof: Using unconfoundedness, cf. Michèle’s talk Monday.

Remark: The conditional expectation E(Yobs | T = t, Xj = xj) ̸= E(Y (t)|Xj = xj) does not
have causal interpretation since the unconfoundedness assumption can not be satisfied for Xj .

Be aware of variable selection and dimensionality reduction.
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Estimating Causal Effects

This causal effect is defined as the Average Treatment Effect (ATE):

µ(t) = E[Y (t) − Y (t0)] where t ∈ T /{t0}.

E.g. In the binary setting T = {0, 1}

τ = E[Y (1) − Y (0)].

The direct estimation of the ATE from observed data be biased due to selection bias. (e.g.
Sampling individuals with high walking rate means sampling indirectly younger individuals.)
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Why Heterogeneous Treatment Effects? i

Problem: A treatment may affect the individuals differently.

Purpose: Conduct group-level comparisons to personalize treatment for some units.

Illustration of the Average Treatment Effect vs Heterogeneous Treatment Effect
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Heterogeneous Treatment Effects ii

The heterogeneous treatment effect within a sub-group with covariates x is given by the
Conditional Average Treatment Effect (CATE) for a level t

τt(x) = E[Y (t) − Y (t0)|X = x]

E.g. In the binary setting T = {0, 1}

τ(x) = E[Y (1) − Y (0) | X = x].
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Heterogeneous Treatment Effects ii

From a statistical point of view: The inference of the CATE can be seen as a nonparametric
regression problem.

Me: "seems to be an easy Task, I can handle
it with any supervised ML algorithm"
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Machine Learning i

A computer program is said to learn from expe-
rience E with respect to some task T and some
performance measure P, if its performance on
T, as measured by P, improves with experience
E. - Tom Mitchell, 1997
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Machine Learning ii

Experience E = Supervised Learning i.e. Regression of Y (t) − Y (t0) on the covariates X .

Task T = Prediction of the CATE τt for a given sub-group with covariates x.

Performance Measure P = Accuracy, Precision, RMSE etc.
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Machine Learning ii
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Machine Learning iii

Experience E = Supervised Learning i.e. Regression of Y (t) − Y (t0) on the covariates X .
Yi(t) − Yi(t0) is not observed for each unit i . This is known as the fundamental problem of
causal inference [Holland, 1986].

T = Prediction of the CATE τt for a given sub-group with covariates x.

Performance Measure P = Accuracy, Precision, RMSE etc. The counterfactual prediction is
counterfactual by definition, it cannot be measured without knowing the ground truth model.
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Meta-learners for estimating
multi-treatment Heterogeneous
Effects



Meta-Learners for estimating the CATE

What is a meta-learner?

A Meta-learner [Künzel et al., 2019] is a statistical framework that models and
estimate the CATE

τt(x) = E[Y (t) − Y (t0)|X = x]

No model restrictions: any supervised ML method can be used.
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Direct plug-in meta-learners

Direct plug-in meta-learners: Naive estimators that estimate the CATE directly by a plug-in
difference (T- and S-learners).

Indeed,

τt(x) = E[Y (t) | X = x] − E[Y (t0) | X = x]
= E[Yobs | T = t, X = x] − E[Yobs | T = t0, X = x]

(Identification of the counterfactual response using unconfoundedness)
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Direct plug-in meta-learners: T-learner

The T-learner (T stands for two) is similar to the binary case.

• Consider two models models µt and µt0 , where µw (x) = E(Y (w)|X = x) for w ∈ {t, t0}
• Estimate µ̂t by regressing Y (t) on X using St = {i , Ti = t}.
• Do the same for µ̂t0 .
• Compute the CATE as plug-in difference τ̂T (x) = µ̂t(x) − µ̂t0(x)

The T-learner regresses on X for t fixed.

The T-learner does not account for the interaction between treatment T and the outcome Y
and create different models for different treatments.
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Direct plug-in meta-learners: T-learner

Challenge 1: You may have a small sample of observations while estimating µ̂t and µ̂t0 .

Unfortunately, there is no solution, maybe data-augmentation?

Challenge 2: The T-learner approach may suffer from selection bias i.e. µw are estimated with
respect to the wrong distribution when sampling Sw = {i , Ti = w}.

EX∼P(·)
[
(µ̂t(X) − µt(X))2] ̸= EX∼P(·|T=t)

[
(µ̂t(X) − µt(X))2] (1)

Solution: µw should be estimated by minimizing the expected squared error on the nominal
weighted distribution P(T = t)/r(t, X).
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Direct plug-in meta-learners: T-learner

Proof: Let p(x) denotes the PDF of X under P(·), p(x | T = t) the PDF of the conditional law
of X |T and Rt =

∫
(µ̂t(x) − µt(x))2p(x | T = t)dx and let r(t, X) = P(T = t | X = x) the

Generalized Propensity Score. We consider the expected squared error of µ̂t

EX∼P(·)
[
(µ̂t(X) − µt(X))2] =

∫
(µ̂t(x) − µt(x))2p(x)dx

= P(T = t)
∫

(µ̂t(x) − µt(x))2p(x | T = t)dx +
∑
t′ ̸=t

P(T = t ′)
∫

(µ̂t(x) − µt(x))2p(x | T = t ′)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t ′)
∫

(µ̂t(x) − µt(x))2 p(x | T = t ′)
p(x | T = t) p(x | T = t)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t ′)
∫

(µ̂t(x) − µt(x))2
P(T=t′|x)p(x)

P(T=t′)
P(T=t|x)p(x)

P(T=t)

p(x | T = t)dx (Bayes rule)
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.
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Direct plug-in meta-learners: S-learner

The S-learner (S stands for single) is similar to the binary case.

• Consider a single model µ such that µ(w , x) = E(Yobs | T = w , X = x).
• Estimate µ̂ by regressing Yobs on both X and T using all observed data.
• Compute the CATE as plug-in difference τ̂S(x) = µ̂(t, x) − µ̂(t0, x)

The S-learner regresses on both X and T .

Challenge: You have no idea how the model deals with the confounding between T and X .

We are unable, at the moment, to understand why and how to regularize the S-learner (cf.
results).
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Pseudo-outcome meta-learners

Pseudo-outcome meta-learners: Learners that build a pseudo-outcome random variable Zt

such that E(Zt | X = x) = τt(x) (M-, DR- and X-learners).

The pseudo-outcome approach is a tentative to

1. Learn CATEs on the whole sample (rather than Sw ).
2. Mitigate the selection bias while learning the outcome Yobs.
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Pseudo-outcome meta-learners: M-learner

M-learner: (M- stands for modified) is Inspired from the Inverse Propensity Weighting (IPW)
[Horvitz and Thompson, 1952].

Consider the pseudo-outcome ZM
t such that

ZM
t = 1{T = t}

r̂(t, X) Yobs − 1{T = t0}
r̂(t0, X) Yobs

where r̂ is an estimator of the GPS r(t, x) = P(T = t | X = x).

Inconvenient: suffers from high variance because of r̂ in the denominator.
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Pseudo-outcome meta-learners: M-learner

Proof: Relies mainly on the fact that 1{T = t}Yobs = 1{T = t}Y (t) and the
Unconfoundedness Assumption.

Consider the first term Y M
t = 1{T = t}/r(t, X)Yobs

E(Y M
t | X = x) = E

[
1{T = t}

r(t, X) Yobs | X = x
]

= 1
r(t, x)E [1{T = t}Y (t) | X = x]

= 1
r(t, x)E

[
1{T = t} | X = x

]
E [Y (t) | X = x] (by Unconfoundedness)

= 1
r(t, x) r(t, x)E [Y (t) | X = x]

= E(Y (t) | X = x)
(2)
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Pseudo-outcome meta-learners: DR-learner

DR-learner: (DR- stands for Doubly-Robust) is inspired from Augmented Inverse Probability
Weighting [Robins et al., 1994] to overcome the problem of model’s misspecification.

Consider the pseudo-outcome ZDR
t such that

ZDR
t = Yobs − µ̂T (X)

r̂(t, X) 1{T = t} − Yobs − µ̂T (X)
r̂(t0, X) 1{T = t0} + µ̂t(X) − µ̂t0(X)

where (µ̂t)t∈T are estimators of the outcome models (µt)t∈T .

Proof: Similar to the M-learner.

Advantage (Double Robustness): The estimator is consistent if one of the models is correct.

Inconvenient: May also suffer from high variance because of r̂ in the denominator.
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Pseudo-outcome meta-learners: X-learner

X-learner: (X- stands for cross procedure estimation) is based on Regression-Adjustment
formulas.

Consider the pseudo-outcome ZX
t such that

ZX
t = 1{T = t}(Yobs − µ̂t0(X)) +

∑
t′ ̸=t

1{T = t ′}(µ̂t(X) − Yobs)

+
∑
t′ ̸=t

1{T = t ′}(µ̂t′(X) − µ̂t0(X))

where (µ̂t)t∈T are estimator of the outcome models (µt)t∈T

Proof: direct calculations

Advantage: Has the lowest variance because of the Regression-Adjustment formula.

Inconvenient: You need to have a well estimation of (µ̂t)t∈T .
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Pseudo-outcome meta-learners: X-learner

In the binary setting, we had the original version of X-learner by Künzel et al. [2019]

ZX
t = e(X)(Yobs − µ̂0(X)) + (1 − e(X))(µ̂1(X) − Yobs)

and developed later by Curth and van der Schaar [2021] into

ZX
t = T (Yobs − µ̂0(X)) + (1 − T )(µ̂1(X) − Yobs)

Random reviewer: The proposed extension seems to be complicated and not intuitive! why did
you not consider the naive extension at t and t0?

To be discussed... In the next talk.
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Neyman orthogonality based learners

Neyman orthogonality based learners: use the Robinson [1988] decomposition and the
Neyman-Orthogonality and address a minimization problem with respect to a causal component.

Advantage: Flexible representation of CATEs estimation problem.

Inconvenient: Solving this problem is very challenging.
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Neyman orthogonality based learners

Let ϵ = Yobs − µT (X) be the counterfactual model error.

Then ϵ satisfies Neyman-Orthogonality
propriety E(ϵ | T , X) = 0 and the generalized Robinson [1988] decomposition

ϵ = Yobs − m(X) −
∑
t ̸=t0

(
1{T = t} − r(t, X)

)
τt(X)

where r(t, x) = P(T = t | X = x) and m(x) = E(Yobs | X = x).

Sketch of the Proof: Step 1: Neyman-Orthogonality propriety

E
[
ϵ | T = t, X = x

]
= E

[
Yobs − µT (X) | T = t, X = x

]
= E

[
Y (t) − µT (X) | T = t, X = x

]
(by Unconfoundedness)

= µt(x) − µt(x) = 0.
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Neyman orthogonality based learners

Step 2: The observed outcome model satisfies

m(X) = E(Yobs | X = x)

= E
[
ϵ +

∑
t∈T

1{T = t}µt(X) | X = x
]

=
∑
t∈T

E
[
1{T = t} | X = x

]
µt(x)

= ...direct calculations...

= µt0(x) +
∑

t ̸=t0∈T

r(t, x)τt(x).
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Neyman orthogonality based learners

Step 3: Gather both terms to obtain

Yobs − m(X) = µT (X) − m(X) + ϵ

=
∑
t∈T

1{T = t}µt(X) − µt0(X) −
∑

t ̸=t0∈T

r(t, X)τt(X) + ϵ

= ...direct calculations...

=
∑

t ̸=t0∈T

[
1{T = t} − r(t, X)

]
τt(X) + ϵ.
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Neyman orthogonality based learners: R-learner

R-Learner: Estimate all K − 1 CATE models {τt}t ̸=0 by minimizing the error ϵ = (ϵ2
i )n

i=1 and
address the problem:

{τ̂
(R)
t }t ̸=t0∈T = arg min

{τt }t ̸=t0 ∈F

1
n

n∑
i=1

[
(Yobs,i − m̂(X i)) −

∑
t ̸=t1∈T

(
1{Ti = t} − r̂(t, X i)

)
τt(X i)

]2

where F is the space of candidate models (e.g. linear models).
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Evaluation on a semi-synthetic
dataset



Description of the semi-synthetic dataset

A semi-synthetic dataset simulating the heat extraction performance Qwell delivered by a
multistage Enhanced Geothermal System (EGS) following the physical model:

Qwell = Qfracture × ℓL/d × ηd .

where

• Qfracture is the unknown heat extraction performance from a single fracture.
• ℓL ∈ [2000, 14000] is the lateral length of the well.
• d ∈ [100, 500] is the average spacing between two fractures.
• ηd , known function of d , is the stage efficiency penalizing the individual contribution when

fractures are close to each other.
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Description of the semi-synthetic dataset ii

Qfracture is simulated (with a numerical emulator) using fracture’s length, height, width and
permeability (fracture design), reservoir’s porosity, permeability and pore pressure (reservoirs
characteristics).

A full factorial DoE dataset of n = 10 × 10 × 2 × 3︸ ︷︷ ︸
design

× 3 × 3 × 3︸ ︷︷ ︸
reservoir

= 16200 observations covering

all possible scenarios of a fracture in a reservoir is created.

The final dataset containing Qwell is obtained after defining your own well characteristics (lateral
lengths ℓL and fracture spacing d).
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Application on the estimation of multi-valued CATEs i

We consider the lateral length T = ℓL as treatment, Y = log (Qwell) as outcome and X are the
rest of parameters. We want to estimate CATEs of the lateral length such that

τℓL(x) = E [log (Qwell(ℓL)) − log (Qwell(ℓ0)) | X = x] = log(ℓL) − log(ℓ0)
i.e. the expected improvement of log (Qwell) compared to baseline well of ℓ0.

Observational biased dataset. A sample of n = 10000 units such that Wells with high lateral
length ℓL are likely to have larger fractures ℓF (and therefore better heat Qwell) and vice versa.

Goal. Know which meta-learners perform better to estimate the true CATEs τℓL?
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Application on the estimation of multi-valued CATEs iii

mPEHE for XGBoost and RandomForest

Meta-learner XGBoost RandomForest

T-learner 0.167 0.154
RegT-Learner 0.153 0.153

S-learner 0.101 0.216

M-learner 1.05 0.907
DR-learner 0.100 0.162
X-learner 0.095 0.175

RLin-learner 0.336 0.338

mPEHE = 1
K−1

∑
t ̸=t0

√
1
n
∑n

i=1 [τ̂t(X i) − τt(X i)]2: The mean of the Precision in Estimation
of Heterogeneous Effect [Shalit et al., 2017] over all possible treatment levels.
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Conclusion



Conclusion

Theory and Numerical evaluation:

• The extension of Heterogeneous Treatment Effects to the multi-valued treatment setting.
• Development of the X- and R-learners in the multi-valued treatment setting.
• Conception and creation of a semi-synthetic dataset for validating causal inference methods.

Next talk: Discussion about theory, limits and perspectives

• Comparison of the errors bounds of the pseudo-outcome meta-learners.
• Are the extensions proposed to X- and R-learners worthy?
• Sample-Splitting for CATEs estimation.
• Discussion about the numerical results: S-learner and over-fitting.
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Questions?



References

K. Arceneaux, A. S. Gerber, and D. P. Green. Comparing experimental and matching methods
using a large-scale voter mobilization experiment. Political Analysis, 14(1):37–62, 2006.

A. Curth and M. van der Schaar. Nonparametric estimation of heterogeneous treatment effects:
From theory to learning algorithms. In A. Banerjee and K. Fukumizu, editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 1810–1818. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/curth21a.html.

A. P. Dawid. Causal inference without counterfactuals. Journal of the American Statistical
Association, 95(450):407–424, 2000. doi: 10.1080/01621459.2000.10474210.

S. Du, J. Lee, and F. Ghaffarizadeh. Improve user retention with causal learning. In Proceedings
of Machine Learning Research, volume 104 of Proceedings of Machine Learning Research,
pages 34–49. PMLR, 05 Aug 2019.

https://proceedings.mlr.press/v130/curth21a.html


M. A. Hernán. A definition of causal effect for epidemiological research. Journal of Epidemiology
& Community Health, 58(4):265–271, 2004. ISSN 0143-005X. doi: 10.1136/jech.2002.006361.

P. W. Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945–960, 1986. ISSN 01621459.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American Statistical Association, 47(260):663–685, 1952. ISSN
01621459.

S. A. Imberman. How effective are financial incentives for teachers. The IZA World of Labor,
pages 158–158, 2015.

S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceedings of the National Academy of Sciences,
116(10):4156–4165, Feb 2019. ISSN 1091-6490. doi: 10.1073/pnas.1804597116. URL
http://dx.doi.org/10.1073/pnas.1804597116.

http://dx.doi.org/10.1073/pnas.1804597116


S. L. Morgan and C. Winship. Counterfactuals and Causal Inference: Methods and Principles for
Social Research. Analytical Methods for Social Research. Cambridge University Press, 2
edition, 2014. doi: 10.1017/CBO9781107587991.

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients when some
regressors are not always observed. Journal of the American Statistical Association, 89(427):
846–866, 1994.

P. M. Robinson. Root-n-consistent semiparametric regression. Econometrica, 56(4):931–954,
1988.

D. Rubin. Estimating causal effects if treatment in randomized and nonrandomized studies. J.
Educ. Psychol., 66, 01 1974.

U. Shalit, F. D. Johansson, and D. Sontag. Estimating individual treatment effect:
Generalization bounds and algorithms. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 3076–3085. JMLR.org, 2017.




	Introduction
	Potential outcome theory and Rubin Causal model
	Meta-learners for estimating multi-treatment Heterogeneous Effects
	Evaluation on a semi-synthetic dataset
	Conclusion
	Appendix
	References


