Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game

Alexander Reisach Maastricht University

Christof Seiler Maastricht University

Sebastian Weichwald Copenhagen University

tl;dr: In additive noise models, variance tends to increase along the causal order → sorting by variance is SOTA 😱

Causality

- Mechanism of data generating process
- Distribution under interventions
 - → "Causal Model = structured set of distributions"
- Effect of interventions
- Counterfactuals

Causality and Structural Causal Models

Causal Structure Learning

Structural Equations of an Additive Noise Model (ANM)

 $X_j = f_j(\operatorname{Parents}(X_j)) + N_j$

Causal Structure

Causal Structure Learning minimize $-\mathcal{L}$ s.t. B acyclic

Data generating process

 $P(X_1,\ldots,X_n)=\prod_{j=1}^d P(X_j| ext{Parents}(X_j))$

Causal Structure Learning

- Dataset
 - Real-world
 - Structural Biology
 - Synthetic
 - Graph structure
 - Additive noise type/parameters
 - Functional relationships
- Performance Measures
 - Structural Hamming Distance
 - Structural Intervention Distance

- Algorithms
 - Constraint-based (conditional independence testing)
 - Score-based (goodness-of-fit score)
 - Combinatorial optimization
 - Continuous optimization ("NoTears")*

Given observations ${\bf X}$ and graph adjacency matrix $W{:}$

$$\underset{W \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \underbrace{ \frac{\|\mathbf{X} - \mathbf{X}W\|_{F}^{2}}{\operatorname{Mean squared error}}}_{\operatorname{Mean squared error}}$$
s.t.
$$\underbrace{\operatorname{tr}(\exp(W \times W)) - d = 0}_{\operatorname{Acyclicity measure}}$$

*Zheng, Xun, et al. "Dags with no tears: Continuous optimization for structure learning." *Advances in Neural Information Processing Systems* 31 (2018).

Continuous Causal Structure Learning is Popular!

Method	Year	Data	Acycl.	Interv.	Output
CMS [152]	2014	low	-	no	Bi
NO TEARS [267]	2018	low	yes	no	DAG
CGNN [75]	2018	low	yes	no	DAG
Graphite [83]	2019	low/medium	no	no	UG
SAM [122]	2019	low/medium	yes	no	DAG
DAG-GNN [262]	2019	low	yes	no	DAG
GAE [177]	2019	low	yes	no	DAG
NO BEARS [142]	2019	low/medium/high	yes	no	DAG
Meta-Transfer [19]	2019	Bi	yes	yes	Bi
DEAR [214]	2020	high	yes	no	-
CAN [167]	2020	low/medium/high	yes	no	DAG
NO FEARS [251]	2020	low	yes	no	DAG
GOLEM [176]	2020	low	yes	no	DAG
ABIC [20]	2020	low	yes	no	ADMG/PAG
DYNOTEARS [178]	2020	low	yes	no	SVAR
SDI [124]	2020	low	yes	yes	DAG
AEQ [64]	2020	Bi	-	no	direction
RL-BIC [272]	2020	low	yes	no	DAG
CRN [125]	2020	low	yes	yes	DAG
ACD [151]	2020	low	Granger	no	time-series DAG
V-CDN [145]	2020	high	Granger	no	time-series DAG
CASTLE (reg.) [138]	2020	low/medium	yes	no	DAG
GranDAG [139]	2020	low	yes	no	DAG
MaskedNN [175]	2020	low	yes	no	DAG
CausalVAE [257]	2020	high	yes	yes	DAG
CAREFL [126]	2020	low	yes	no	DAG / Bi
Varando [244]	2020	low	yes	no	DAG
NO TEARS+ [268]	2020	low	yes	no	DAG
ICL [250]	2020	low	yes	no	DAG
LEAST [271]	2020	low/medium/high	yes	no	DAG

Vowels, Matthew J., Necati Cihan Camgoz, and Richard Bowden. "D'ya like dags? a survey on structure learning and causal discovery." *arXiv preprint arXiv:2103.02582* (2021).

Current State of Causal Structure Learning

Graph	ER-2
Nodes	50
Samples	1000
Edge weights	iid uniform, std. (.5, 2), (5, -2)
Noise	iid Gaussian, std. (.4, .8)

Marginal Variances in ANMs

Weights and noise parameters are drawn i.i.d!

Var-sortability

- 1. Marginal variances carry information about the causal order
- 2. Sorting by variance gives a complete ordering
- 3. Causal ordering is a partial ordering

To what extent is the ordering by variance a valid causal ordering?

Var-sortability:

Fraction of all cause-effect paths where the effect has a higher variance than the cause.

Empirical Var-sortability

Linear						
		varsortability				
		min	mean	max		
graph	noise					
ER-1	Gauss-EV	0.94	0.97	0.99		
	exponential	0.94	0.97	0.99		
	gumbel	0.94	0.97	1.00		
ER-2	Gauss-EV	0.97	0.99	1.00		
	exponential	0.97	0.99	1.00		
	gumbel	0.98	0.99	0.99		
ER-4	Gauss-EV	0.98	0.99	0.99		
	exponential	0.98	0.99	0.99		
	gumbel	0.98	0.99	0.99		

Nonlinear					
		varsortability			
		min	mean	max	
graph	ANM-type				
ER-1	Additive GP	0.81	0.91	1.00	
	GP	0.72	0.86	0.96	
	MLP	0.55	0.79	0.96	
	Multi Index Model	0.62	0.82	1.00	
ER-2	Additive GP	0.79	0.91	0.98	
	GP	0.82	0.89	0.97	
	MLP	0.46	0.71	0.87	
	Multi Index Model	0.65	0.79	0.89	
ER-4	Additive GP	0.90	0.95	0.98	
	GP	0.74	0.88	0.93	
	MLP	0.59	0.72	0.85	
	Multi Index Model	0.57	0.73	0.85	

Naalinaan

Alexander Reisach

Exploiting Var-sortability

- 1. Order Search
 - a. Sort by increasing (decreasing) marginal variance
- 2. Parent Search
 - a. Regress each node on its predecessors in the variance order
 - i. BIC/Lasso regularization
 - ii. Edge thresholds

"Sort-and-regress" - a diagnostic tool for the effect of varsortability

(Not the only way of exploiting var-sortability!)

Empirical Results

50 Nodes, Gaussian Noise, Linear Data

Explanation and Consequences

• Intuition

- MSE prioritizes high-variance nodes
- High-variance nodes tend to be effects
- Acyclicity constraint keeps structure

• Identifiability

- Var-sortability reveals causal order
- lid sampling & parameters drive varsortability

• Performance

- MSE-based methods perform well regardless of optimization
- Drop upon standardization

Takeaway: Beware of the Simulated DAG!

• Benchmarking

- Data scale matters
- Var-sortability arises easily in synthetic data
- Does benchmark performance translate?
- Is var-sortability real?

• Best practices

- Report var-sortability/sortnregress
- Simulate real-world processes
- Use real-world data

Follow-up Work at MICS

Myriam Tami *CentraleSupélec*

Céline Hudelot *CentraleSupélec*

Expected Var-sortability in Causal Chains

Does var-sortability arises for a given distribution of model parameters? *Assumption: Diverging expectation of weight product distribution*

Direct paths: Var-sortability is lower bounded by weight distribution

In-direct paths: Increasingly var-sortable (from a point), a lower bound can be found

Weights in [.5, 2], Gaussian noise variance in [.4, .8]

Marginal Variances and Signal-to-Noise ratio

Covariance Matrix

Greedy relative MSE DAG search

- 1. Greedy forward search over new edge insertions
- 2. Explainable fraction of each node's variance as score Criterion

Preliminary Empirical Results

50 node ER-2 Gaussian linear ANM

Open questions

1. Sufficient and necessary criteria for high (low) var-sortability

- a. In relation to the length of causal chains
- b. In general graphs

2. Signal-to-noise ratio & associated algorithms

- a. Impact of different scaling schemes
- b. Efficient exploitation for structure learning
- c. Empirical comparison on common benchmarks

3. Identifiability after standardization

- a. Given var-sortability of 1 (on raw data)
- b. Partial identifiability for smaller var-sortability (on raw data)

Thank you for your attention!