
tl;dr: In additive noise models, variance tends to increase along the causal order
⇝ sorting by variance is SOTA 😱 

Beware of the Simulated DAG! 
Causal Discovery Benchmarks May Be Easy To Game
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Causality
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● Mechanism of data generating process
● Distribution under interventions

⇝ “Causal Model = structured set of distributions”
● Effect of interventions
● Counterfactuals
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Causality and Structural Causal Models
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Adjacency Matrix of
Directed Acyclic Graph
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Data generating process

Causal Structure Learning

Structural Equations of an 
Additive Noise Model (ANM)

Causal Structure Learning
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Causal Structure
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*Zheng, Xun, et al. "Dags with no tears: Continuous 
optimization for structure learning." Advances in Neural 
Information Processing Systems 31 (2018).

Causal Structure Learning
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● Dataset
○ Real-world

■ Structural Biology
○ Synthetic

■ Graph structure
■ Additive noise type/parameters
■ Functional relationships

● Performance Measures
○ Structural Hamming Distance
○ Structural Intervention Distance

● Algorithms
○ Constraint-based (conditional 

independence testing)
○ Score-based (goodness-of-fit score)

■ Combinatorial optimization
■ Continuous optimization (“NoTears”)*
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Continuous Causal Structure Learning is Popular!
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Vowels, Matthew J., Necati Cihan Camgoz, and Richard Bowden. 
"D'ya like dags? a survey on structure learning and causal 
discovery." arXiv preprint arXiv:2103.02582 (2021).



Alexander Reisach

Current State of Causal Structure Learning
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Graph ER-2

Nodes 50

Samples 1000

Edge weights iid uniform, std. (.5, 2), 
(-.5, -2)

Noise iid Gaussian, std. (.4, .8)
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Marginal Variances in ANMs

8

Weights and noise parameters are drawn i.i.d!

Generation of a causal chain
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Var-sortability

1. Marginal variances carry information 
about the causal order

2. Sorting by variance gives a complete 
ordering

3. Causal ordering is a partial ordering

To what extent is the ordering by variance a 
valid causal ordering?

9

Var-sortability:
Fraction of all cause-effect paths where the effect has 
a higher variance than the cause.
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Empirical Var-sortability
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Exploiting Var-sortability
1. Order Search 

a. Sort by increasing (decreasing) marginal variance

2. Parent Search 
a. Regress each node on its predecessors in the variance order

i. BIC/Lasso regularization
ii. Edge thresholds

“Sort-and-regress” – a diagnostic tool for the effect of varsortability

(Not the only way of exploiting var-sortability!)
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Empirical Results
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50 Nodes, Gaussian Noise, Linear Data

Sortnregress – A diagnostic tool:
1. Order Search Sort by increasing 

marginal variance
2. Parent Search Regress each 

node on its predecessors in the 
variance order
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Explanation and Consequences
● Intuition

○ MSE prioritizes high-variance nodes
○ High-variance nodes tend to be effects
○ Acyclicity constraint keeps structure

● Identifiability
○ Var-sortability reveals causal order
○ Iid sampling & parameters drive 

varsortability

● Performance
○ MSE-based methods perform well 

regardless of optimization
○ Drop upon standardization
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Takeaway: Beware of the Simulated DAG!
● Benchmarking

○ Data scale matters
○ Var-sortability arises easily in synthetic data
○ Does benchmark performance translate?
○ Is var-sortability real?

● Best practices
○ Report var-sortability/sortnregress
○ Simulate real-world processes
○ Use real-world data
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Real-world data

empty graph



Follow-up Work at MICS
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Expected Var-sortability in Causal Chains
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Does var-sortability arises for a given distribution of 
model parameters? Assumption: Diverging expectation 
of weight product distribution
Direct paths: Var-sortability is lower bounded by weight 
distribution
In-direct paths: Increasingly var-sortable (from a point), 
a lower bound can be found

Weights in [.5, 2], Gaussian noise variance in [.4, .8]
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Marginal Variances and Signal-to-Noise ratio

17

standardization

Covariance Matrix

Greedy relative MSE DAG search

1. Greedy forward search over new edge 
insertions 

2. Explainable fraction of each node’s 
variance as score Criterion
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Preliminary Empirical Results
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50 node ER-2 Gaussian linear ANM
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Open questions
1. Sufficient and necessary criteria for high (low) var-sortability

a. In relation to the length of causal chains
b. In general graphs

2. Signal-to-noise ratio & associated algorithms
a. Impact of different scaling schemes
b. Efficient exploitation for structure learning
c. Empirical comparison on common benchmarks

3. Identifiability after standardization
a. Given var-sortability of 1 (on raw data)
b. Partial identifiability for smaller var-sortability (on raw data)
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Thank you for your attention!
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